UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version Syl		Paper	
				IGCSE – May/June 2012	0620	31
1	(a)	(i)	-	poration / boiling / vaporisation / evaporate / vaporise densation / liquefaction / condense / liquefy;	e;	[1] [1]
		(ii)	beca	densation accept : correct equation $H_2O_{(g)} \rightarrow H_2O_{(l)}$ ause energy / heat is given out / gas has more energy to change liquid to gas so reverse must give out		
	(b)	chlc	orinati	ion / chlorine to kill microbes;		[1]
		filtra acc		[1]		
	(c)	(i)	(which sulfut (read OR	bustion of <u>fossil fuels;</u> ch contain) sulfur; ir dioxide formed; cts in air / with water to form) sulfurous / sulfuric a	cid;	[1] [1] [1]
			reacto fo	gen and oxygen in air; t at high temperatures / in engines; rm oxides of nitrogen or named oxide of nitrogen; cts in air / with water to form) nitrous / nitric acid;		[1] [1] [1] [1] [max 4]
		(ii)	calci pH a OR calci	um oxide is soluble in water / reacts with water to foum hydroxide; above 7 / the water becomes alkaline; um carbonate insoluble in water; cannot be above 7 / water is neutral / does not make		[1] [1] [1] [max 2]
						[Total: 11]
2	(a)	nitric acid; sodium hydroxide / carbonate / hydrogen carbonate;				[1] [1]
		сор	per(II		[1]	
		-	name		[1]	
		silve mus	[1]			
		zinc	c(II) s	ulfate		[1]
	(b)	(i)		aq) + $Cl^-(aq) \rightarrow AgCl(s)$ ation correct state symbols missing [1]		[2]
		(ii)		$O_3 + H_2SO_4 \rightarrow ZnSO_4 + CO_2 + H_2O$ ect formula for zinc sulfate = 1		[2]

[Total: 10]

	· ~	900		IOOOF M // OOAO	2000	. apo.
				IGCSE – May/June 2012	0620	31
3	(a)	(i)	decr	ease down group;		[1]
		(ii)	caes	sium / francium;		[1]
		(iii)		+ $2H_2O \rightarrow 2RbOH + H_2$ palanced = [1]		[2]
	(b)	(i)	Li⁺			[1]
		(ii)	N^{3-}			[1]
	(iii) regular arrangement of ions / particles / positive and negative ions alternance: atoms			ate; [1]		
		(iv)	3:1; ratio	to balance charges / reason in terms of valency;		[1] [1]
						[Total: 9]
4	(a)	2 +	8 + 1	1 + 2		[1]
	(b) hard; strong / high tensile strength; high mp / bp / high fixed points; high density;				[2]	
	three properties = [2] two properties = [1] not: properties of all metals e.g. good conductor, lustre etc. or form coloured					compounds
	(c) catalyst would not affect yield / change position of equilibrium / affects both sides equ					
		, ,	iner) ction;	temperature would reduce yield / increase in temper	rature would favo	ur back [1]
	(d)	(i)	V ³⁺ i	s oxidant;		[1]
		(ii)		o V ⁴⁺ ; ease in oxidation number / electron loss;		[1] [1]
						[Total: 8]
5	(a)			carbonate → calcium oxide + carbon dioxide correct symbol equation		[1]
		$Ca(OH)_2 \rightarrow CaO + H_2O$				[1]
	(b)	(i)		and NO ₂ and O ₂ ; ept: names or correct formulae		[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

			IGCSE – May/June 2012	0620	31	
	((ii)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$ accept: $NaNO_3 \rightarrow NaNO_2 + 1/2 O_2$ not balanced = [1]			[2]
	(c)	Na /	′Ca;			[1]
	(d)		Ag; ept: ions Cu ²⁺ and Ag ⁺			[2]
					[Tota	al: 8]
6	(a)	10 c 65 c				[1] [1]
	(b)	(i)	chlorination / substitution / photochemical / exothermic /	/ halogenation / fr	ee radical;	[1]
	((ii)	(compounds) same molecular formula; different structur	al formulae;		[2]
	(i	iii)	CH_3 – CH_2 – CH_2 – Cl_2 – Cl_3 – CH_2 – CH_3 –			[1] [1]
	(c)	(i)	potassium manganate(VII) / potassium dichromate(VI) note: do not insist on oxidation numbers but if given mu		;	[1]
	((ii)	butanoic acid;			[1]
	(i	iii)	butyl ethanoate;			[1]
			correct formula all bonds shown = [2] if alkyl groups incorrect then correct ester linkage showi	ing bonds = [1]		[2]

Mark Scheme: Teachers' version

Syllabus

Paper

[Total: 12]

Page 4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0620	31

7 (a) burning

produces toxic gases / harmful to health increases greenhouse gases / global warming reduces visual pollution / litter reduces risks to wildlife shortage of landfill sites / reduces space needed in landfill sites / saves space non-biodegradable / long time to rot / decompose / accumulates waste burning source of energy / used to generate electricity

recycling

conserves petroleum / natural resources
difficult to recycle / expensive / takes much energy
problems over sorting
reduces need for landfill
quality of plastic is reduced each time it is recycled
four DIFFERENT valid points which are advantages or disadvantages of burning and/or
recycling

[4]

[1]

(b) (i) addition (polymerisation); [1]
(polymer) only product / no by-products; [1]
condensation (polymerisation); [1]
(polymer and) simple molecule / water / hydrogen chloride / one other product forms; [1]
(ii) a correct linkage (for a polyamide / polyester); [1]
two different monomers; [1]

(a) (i) device which changes chemical energy; [1] into electrical energy; [1] **OR** produces a voltage / potential difference / electricity; [1] due to difference in reactivity of two metals; [1] produces a voltage / potential difference / electricity; [1] by redox reactions; [1] (ii) negative / electrode B / right electrode; [1] accept: anode because it is the electrode which supplies electrons to external circuit

external circuit
loses ions / iron ions / Fe²⁺ or Fe³⁺;
electrons move from this electrode;

[1]

(iii) change of mass of electrode / mass of rust formed;

[1]

time / mention of stop watch / regular intervals; [1]

(iv) to make it a better conductor;

8

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0620	31

(b) moles of Fe = 51.85/56 = 0.926 (0.93); [1] moles of O = 22.22/16 = 1.389 (1.39); [1] moles of H₂O = 16.67/18 = 0.926 (0.93); [1]

if given as 0.9 1.4 0.9 **three** of the above correct = [2] **two** of the above correct = [1]

simplest whole number mole ratio Fe : O : H₂O is 2: 3: 2 / Fe₂O₃.2H₂O; [1] **allow:** ecf for a formula based on an incorrect whole number ratio

[Total: 12]